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An experiment on third-order resonant wave interactions 
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(Received 30 July 1965) 

An experiment has been carried out to verify the existence of the resonant inter- 
action between trains of gravity waves, predicted by Phillips (1960). As suggested 
by Longuet-Higgins (1962), two trains of waves in mutually perpendicular 
directions were generated in a rectangular wave tank. The ratio ol/cr2 of the wave 
frequencies was varied (1-4 < al/az < 2.1). When crl/a2 .i. 1.7357 it was expected 
that a resonant interaction would take place, generating a wave of frequency 
(2vl--v2). The amplitude of the third wave was expected to increase almost 
linearly in the direction of wave propagation. The shape of the response curve as 
a function of al/az was also predicted. 

In  the present experiments rather large wave amplitudes had to be used, and 
the theoretical shape of the response curve was distorted by non-linear detuning. 
Nevertheless the peak amplitude of the resonant wave was found to increase 
with distance in very nearly the manner predicted. 

These experiments were carried out in 1961 but publication was deferred pend- 
ing a similar but more accurate investigation by McGoldrick, Phillips, Huang & 
Hodgson (1966). Much of the theoretical discussion given in the present paper 
is relevant to their work. 

1. Introduction 
It was first shown by Phillips (1960) that three trains of gravity waves in deep 

water, with horizontal wave-numbers k,, k,, k,, say, may under certain conditions 
interact so as to transfer energy to a fourth wave-number, say k,. Two necessary 
conditions for such interaction are that 

klkk2+k3+k,=  0, (1) 

and v1&a2fv ,+a4= 0, ( 2 )  

where ai denotes the frequency? corresponding to ki. Hasselrnann (1962) has 
shown that two of the signs in (1) must be positive and two negative; and similarly 
in ( 2 ) .  

Any two of the wave numbers, say k, and k,, may also be equal (Phillips 1960) 

2k1- kz = k,, in which case one has 

2u,-a2 = cr,. (3) 

The locus of k, is then a certain figure-of-eight curve, with k, at the centre (see 
Phillips 1960, figure 1). 

t Radian frequencies and angular wave-numbers are used throughout this paper. 
27 Fluid Mech. 25 
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If the three wave amplitudes a,, a,, a3 are small, and if a4 is initially zero, then 
Phillips showed that a4 is proportional to the product ala2a3 at first, and it grows 
proportionally to the time t. Benney (1962) considered a more general situation 
when all four wave amplitudes a,, . . . , a4 were of comparable magnitude. The 
existence of periodic solutions in this case was shown by Bretherton (1964). 

In  a series of papers (1960, l962,1963a, b ) ,  Hasselmann has studied the reson- 
ant transfer of energy for a continuous wave spectrum, and finds (1963b) that 
for ocean waves the modification of the wave spectrum by this mechanism should 
be appreciable. 

On the other hand, the whole analysis has been called in question by Pierson 
(1961), who has suggested that the apparent transfer of energy is not real, but 
is a consequence of a deficiency in the method of approximation. 

In  order to test the theory under controlled conditions one of the present 
authors (Longuet-Higgins 1962) suggested a simple experiment that could be 
carried out in a fairly small wave tank. Let two wave-makers be placed on ad- 
jacent sides of a rectangular tank, with wave absorbers on the two sides opposite 
(as in figure 1.). Let one of the wave-makers generate waves with frequency g1 
and the other with frequency g2. The wave-numbers k, and k, are mutually 
perpendicular. Then when the ratio approaches a certain value such that the 
conditions (3) are satisfied it should be possible to detect a wave of frequency 
(2a, - g,) and wave-number (2k, - k,) due to the resonant interaction. The 
rate of growth was calculated theoretically in the paper just mentioned (Longuet- 
Higgins 1962). 

The present paper is an account of an attempt to carry out this experiment. 
The observations were made during 1961 and 1962 a t  the Admiralty Experi- 
mental Works, Haslar, and were described by the present authors in a prelimi- 
nary report dated 1962. The results, as will be seen, did indeed show the existence 
of a resonant interaction, but a t  the large wave slopes used, the shape of the 
response curve was distorted by non-linear effects (see below). Since the wave 
amplitude was limited by the sensitivity of the apparatus, publication was 
deferred, while, under the guidance of Dr Phillips, similar but more precise 
investigations were begun a t  Johns Hopkins University. These are described 
fully in an adjoining paper (McGoldrick et al. 1966), and appear to have also 
verified the theoretical form of the response curve. Our own experiments re- 
mained unpublished till now. Nevertheless, McGoldrick, et al. made some use of 
our results and calculations, and have referred to them. It seems convenient 
to present them here. Moreover these earlier experiments, though less conclusive 
in themselves, may have some additional points of interest to recommend them. 

It should perhaps be mentioned that a different type of non-linear interaction 
between gravity waves has recently been observed and analysed by Benjamin 
& Feir (1966). 

2. Theoretical expectations 
In  this section we shall summarize the main theoretical results that are 

relevant to the subsequent experiments. 
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The resonance condition. The two primary? wave trains will be supposed to be 
mutually perpendicular, as in figure 1. If, to  begin with, we assume that the waves 
are unaffected by finite depth or surface tension then the resonance condition 
can be derived very simply as follows. (Afterwards we take these affects into 
account, as well as the effect of finite wave amplitude.) 

Since the primary waves k,, k, are both free waves (to first order) we have 

where ki = lkil and g denotes the acceleration of gravity. In  order that the 
interaction wave k, shall also be a free wave we must have 

(~cT, -cT , )~  = g12kl-k21. (2.2) 

In  the special case when the two primary waves are mutually perpendicular, 
this condition becomes 

(2v1 - IT,), = g(4k! +ICE)+ = ( 4 4  +(r;)a, (2-3) 

v1/r2 = r. (2.4) 

(2.5) 

Inspection shows that this equation has just two roots: r = 0 and r = 1.7357 
(+ 43) .  Thus there is just one non-trivial solution, namely 

(2.6) 

k1/k2 = 3.0123, (2.7) 

(2.8) 

from (2.1). Let us write for convenience 

Then on rejecting the trivial case (T, = 0, we obtain from (2.3) 

(2r- 1)2 = (4r4+ 1)+. 

gl/a2 = 1.7357 = T,,, 

say. The ratio of the wave-numbers is then 

so that the wave-number k, makes an angle with k, given by 

(see figure 1). 
We have so far neglected the effects of surface tension, finite depth and finite 

wave amplitude (including the mutual interaction of the waves). It can be shown 
(see Appendix 1) that provided each of these effects is small, resonance occurs 
when 

say, where r,, is given by (2.6), 

tan-l (k1/2k,) = 9' 24' 

crl/a2 = r,, + Ar = rk, 

Ar = - 1.957 Eel - O.054Es2 + 2.01 1&,, 

(2-9) 

(2.10) 

and el, E,, e4 are the quantities summarized in table 1. The summation Z, refers 
to the sum of the corrections in each column. Thus Ar represents the total amount 
whereby the frequency ratio is detuned. 

t It is convenient to refer to the waves with wave-numbers k,, k,, k, as the primary 
waves, and the wave with wave-number k, as the tertiary wave. This distinction can only 
be made when the amplitude a, is initially zero. 

27-2 
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The corrections for finite amplitude have been calculated on the assumption 
that the motion is irrotational, which is known to be true only in the initial stages 
of the motion (Longuet-Higgins 1960). Generally, some second-order vorticity 
will be diffused into the interior, producing currents of order a:c,k, or aic,k,. 
These will affect the critical ratio r to an extent comparable with the effects 
mentioned. However, since the mass-transport currents are somewhat unpre- 
dictable, their effect is not included. 

Amplitude of the tertiary wave. Under conditions of resonance, the expected 
wave amplitude was shown by Longuet-Higgins (1962) to be given by 

a4 = 0.442(a1 k,), (a,k,) x, (2.11) 

where x denotes the horizontal distance from wave-maker 1, in the direction of 
propagation. That is to say, the wave amplitude grows (at first) linearly with 
horizontal distance. If viscous dissipation is taken into account (see Appendix a), 
equation (2.11) must be replaced by 

a4 = 0-442 ( c x , ~ , ) ~  (a,k,) (1 - e-Bz)/B, (2.12) 

where B = 4va;/g3. (2.13) 

This turns out to be a fairly small correction. 
A natural procedure is to observe the amplitude of the resonant wave at  

different distances from the wave-maker and under conditions when the fre- 
quency ratio T is near to (but not necessarily at) resonance. The shape of the 
response curve as a function of r ,  is considered in Appendix 2. It is shown there 
that the expected amplitude a4 is given approximately by 

a4 = ahax [sin (xSk)/(xSk)l, (2.14) 

where allnax is the value given by equation (2.12) and where 

8k = - 0.249k4(r - r;) .  (2.15) 

Thus the width W of the response curve, that is to say the interval of r separating 
the peak response from the nearest minimum value, is given by 

x8k = 7 ~ ,  W = 12.7/(k4x). (2.16) 

The above formulae take no account of the detuning effects mentioned earlier, 
Hence the width is inversely proportional to the distance from wave-maker 1. 

except in so far as r,, is replaced by r;. 
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If the distance x were allowed to increase indefinitely, the finite value of the 
steepness a, Ic, of the tertiary wave would ultimately shift the resonant frequency 
through a distance comparable with the central region of the response curve. 
The above formulae would then not apply. However, in the present experiments 
the detuning due to a,k, was small compared with W ,  so that the necessary con- 
dition was satisfied. 

There must also be some transfer of energy from k, to both k, and k,, leading 
to a slight change in the amplitudes a, and a,. But these changes were also negli- 
gible. 

3. Description of the apparatus 
The experiments were carried out in a rectangular tank, of which a plan view 

is shown in figure 1. The overall horizontal dimensions were loft. by Sft., 
(3.05m by 2.44m) and the maximum possible depth was 9.0in. (23cm). The 
two wave-makers, shown schematically in figure 1, were of the vertical plunger 
type, having a wedge-shaped vertical cross-section. Each was driven by a 1 h.p. 
electric motor. By using a battery power supply, the motor speeds could be 
kept constant to within 0-2 % over a period of 3 min. 

Wave-maker 2 

Wave-maker 
1 

I I  \ Beach 2 

10 ft. 

FIGURE 1. Plan of the wave tank, showing the theoretical crest-pattern of the tertiary 
waves, and the zone of reflexion. The surface displacement was recorded at  A, B, C and D. 
A, and A, denote the wavelengths of the two primary waves. 

On the sides of the tank opposite the wave-makers there were wave-absorbing 
beaches, so designed as to reflect not more than 1 yo of the wave energy. Since 
wave-maker 1 was always operated at  a higher speed than wave-maker 2,  the 
corresponding beach could be narrower. 

According to the simple theory given in Q 2 the direction of the tertiary inter- 
action wave at resonance should be at an angle of 9"24' with the direction of 
wave 1 (away from the corresponding wave-maker) and with a slight component 
towards wave-maker 2 .  Hence there should be a narrow zone of reflexion from 
wave-maker 2, as indicated in figure 1. 

One expects the amplitude of the teritary wave to increase proportionally 
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with distance in the direction of wave propagation. Continuous records of the 
surface elevation were therefore made at each of the points A, B, C and D 
in figure 1, at distances of 1.5, 4.0, 5.5 and 7*Oft., (46, 124, 155 and 216cm) re- 
spectively from wave-maker 1, measured parallel to the direction of k,, and 2.5 ft 
(76 cm) from wave-maker 2. These positions are well outside the zone of reflexion. 

The wave recorder used was of the capacitance-wire type, having two parallel 
vertical elements about 0.65 cm apart. Surface-tension effects, a t  first trouble- 
some, were overcome by treating the wires with a detergent. The apparatus was 
calibrated by raising and lowering the wires through a known distance. 

0 

I t  I 

I 
200 

n 
300 

FIGURE 2.  Complete harmonic analysis of a typical record, at position C. 

After amplification, the electrical signal from the wave recorder was fed to one 
channel of a high-speed pen recorder. The remaining channels of the recorder 
were used for time markings. A microswitch on the shaft of each wave-maker made 
a contact once every revolution, giving an accurate measure of the relative 
frequencies. A third time-trace was operated by a one-minute time switch. 

4. Procedure and method of analysis 
In  operation, the frequency crl of wave-maker 1 was kept constant and the 

frequency crz was altered in small steps. At each setting of cr2, time was allowed 
for the wave conditions to become steady. In this way the whole range 

was examined, at  each of the stations A, B, C and D. 
1.4 < al/g2 < 2.1 
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The record of the surface elevation at any point contains, besides the two 
fundamental frequencies a1 and a, and a small amount of random noise, also 
harmonics of the form (na,+ma,), where n and m are positive or negative 
integers or zero. To examine the output in a typical case, when a,/c~, = 1.58, 
the recorded output was digitized and a harmonic analysis performed by a stand- 
ard routine.? The squares of the Fourier components (regardless of phase) 
are as shown in figure 2. From this it can be seen that the components a1 and a, 
are by far the largest in the record, and that the next largest is the interaction 
frequency (2a1-a,), closely followed by the second harmonics 2a1 and 2a,. 
The remaining harmonics are all considerably smaller. The magnitude of the 
second harmonics is such as would be expected on the ordinary second-order 
theory, in which resonance plays no part. The magnitude of the resonance har- 
monic will be discussed below. 

From - 
wave-maker 2 

t 
From 

wave-maker 1 

FIGURE 3. Diagram of the differential gear driving the harmonic analyser. 

However, to examine each frequency spectrum in detail for the large number 
of records required, would have been unnecessarily laborious, since in general only 
the magnitude of the harmonic (2a1 - a,) was required. Accordingly a very simple 
analogue harmonic analyser, for this particular frequency, was devised as 
follows. 

Consider the differential gear shown in figure 3. The gear is normally driven 
by rotating the cage at an angular frequency al, say. If the two other shafts are 
so constrained as to rotate at  the same speed, then both will rotate with angular 
speed al. But if one of the shafts is held stationary, the other will rotate at  a 
speed 2a1. 

On the other hand, if the cage is held still and one of the other shafts is rotated 
at a speed a,, the remaining shaft will rotate with speed - a,. The motions are 
additive. Hence if the cage is driven with speed al, and one of the other shafts 
with speed a,, the remaining shaft will rotate with the required speed (2a1 - u,). 

Making use of this principle, the driving shaft of wave-maker 1 was coupled 
directly to the cage of a differential gear; the driving shaft of wave-maker 2 was 
coupled to one arm of the differential. The other arm of the differential was then 
made to rotate a linear, wire-wound resistor, across which the electrical output 
f(t) of the wave probe, was applied through moving electrical contacts. A 

t BOMM. 
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stationary pair of contacts then picked up the voltage across the resistor. This 
was proportional to f ( t )  cos 0, where 

0 = (2r1 - r2) ( t  - to) 

denotes the orientation of the resistor. The output was then smoothed by 
feeding through an R.C. filter with a time-constant of 30 see. The smoothed out- 
put then gave a measure of the Fourier cosine component a t  frequency ( Zcrl - c2). 
A second pair of contacts, at right-angles to the first, gave a measure of the Fourier 
sine component. If these components are denoted by C and S respectively, then 
the total amplitude of the harmonic was taken to be (C2 + S2):. 

I 
I 

I I 

FIGURE 4. The relation between the harmonics ( m a l  + ma2) 
in the range 1.5 < r < 2.0. 

The amplitude determined in this way was compared with the amplitude 
determined by the complete harmonic analysis in the special case mentioned 
above. The two determinations of the amplitudes by the two methods were very 
nearly identical. Accordingly, in general the simpler analogue method was 
used. 

The analysis using the differential gear had also the advantage that it referred 
the tertiary wave to the actual frequencies of the primary waves rather than to a 
sine wave of fixed frequency, and so was less sensitive to frequency drift. 

Figure 4 shows the frequencies of the harmonics (nr,+mr,) as a function of 
the ratio r = al/g2. It can be seen that a t  two points in the range, namely r = 1-5 
and r = 2.0, the €requency of interest, namely ( 2 r l  - c2), coincides with another 
of the harmonics. At these points it was not possible to determine the amplitude 
u4. However, when the ratio r was quite close to 1.5 or 2-0 it  was still possible to 
measure u4, since the effect of the unwanted harmonics was simply to produce 
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slow beats in the output of the R.C. filter. The amplitude of the harmonic 
(2a, - a,) may then be shown to correspond to the mean value of the output. 

5. Experimental parameters 
The sensitivity of the apparatus was limited by the wave probe itself. In  order 

that the amplitude a4 of the tertiary wave should grow to an appreciable value 
within the limited space of the tank, it was necessary that the steepness of the 
primary waves, especially (alkl), should be as large as possible. 

The stroke of the wave-makers was kept constant at  0.5in. (1.27 cm). The 
wave amplitude a, was constant at about 1-06 em. The amplitude a, depended 
somewhat on the frequency, diminishing from 0.85 ern at  r = 1-5 to about 0.70 at 
r = 2.0. Near the resonance peak, a, was 0.74 em. Thus, for the wave amplitudes 
we have 

The (constant) parameters for wave 1 were given by 

al = 2n-/0.38 = 16.5 sec-l, 

k, = o:/g = 0.28cm-l, 

a, = 1*06cm, a, fi 0.74cm. 

1 
I 

~ , k ,  = 0-281. 

The parameters for wave 2 were variable, but at the resonance frequency a,, 
when a,/a; = 1.92, we have 

a2 = aJl.92 = 8.6sec-l, 

k,  = a,/g = 0.076cm-l, 

a,k, = 0.056. 

Corresponding to these values we have 

1 cr4 = (2a1 - a,) = 24.4 sec-l, 

k4 = (4k: + k;)& = 0.56 cm-l. 

The expected amplitude a4 of the tertiary wave was of the order of a few mm. 
It may be as well to emphasize how critically the amplitude a4 may be expected 

to depend on the frequency a,, for a given ratio r .  This is because a4 is propor- 
tional to ( ~ , k , ) ~  (a2k2); and since k, is nearly proportional to a!, and k, to a;, a4 
varies roughly as the sixth power of a,. 

The amplitude a4 will also be affected by any reflexion, however small, of 
wave energy from the beaches, For example, a wave - k, reflected from beach 2, 
having only 10 % of the amplitude of k,, would produce a corresponding tertiary 
wave travelling in almost the same direction as that to be measured, and changing 
their combined amplitude by as much as 10% depending on their relative 
phase at  the point of observation. A second reflexion of k, at wave-maker 2 
could increase this effect to 20%. Whether the effects will reinforce or cancel 
one another at  a fixed point will depend on their relative phase, and hence on 
the wave-number k,, which in turn depends on the frequency. 
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6. Comparison of theory and observation 
The observed amplitudes a4 of the tertiary harmonic are plotted against the 

ratio r in figures 5 (a )  to 5(d). The measurements have been normalized by divid- 

ing by (a1 N2 (a2 h2)- 
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FIGURE 5(a)  to (d). Observed values of a,/(a,kJ2 (a,k,), measured at positions 
A, B, C and D, respectively. 

It can be seen that the main peak in each of the four figures occurs somewhat 
t o  the right of the uncorrected value ro = 1-736. The maximum observed value of 
as/(alE1)2(a2k2) in each of figures 5(a )  to 5(d)  is plotted against the distance x 
from wave-maker 1 in figure 6. Also in figure 6 is shown the theoretical peak ampli- 
tude given by the formula 0 . 4 4 2 ~ .  From this it can be seen that the peak ampli- 
tude increases with the distance x in about the same way as predicted. 

The theoretical width W of the response curve, as given by (2.16) is shown 
below in table 2. Ic, has been kept constant at  0.56 cm-l. Curves of the form (2.14) 
have been fitted roughly to the observations in figures 5 (a)  to 5 (d). As can be seen, 
there is some resemblance to the observed distribution of points. However 
in figures 5 ( e )  and 5 (d) the observations show a noticeable rise in amplitude for 
values of r less than 1.6, in contrast to the theoretical prediction. 
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To estimate the expected positions of the peak amplitude we have inserted 
in table 1 the values of a,, a,, k,, k, and h given above, leaving (a4k4) for the 
moment undetermined. The following corrections are obtained. 

r3 
Y 

d", 5 
v 

0 
0 100 290 300 cm 

X 

FIGURE 6. The largest observed values of a4/(a1kJ2 (a,k,), at the four positions A, B, C, D. 
The solid curve represents the theoretical peak amplitude. 

Position 2 W 
A 46 0.48 
B 124 0.18 
C 155 0.15 
D 216 0.11 

TABLE 2 

€1 €2 €4 

Finite depth 0.000 - 0'054 0.000 

Finite amplitude 0.076 0.002 0.221 
Surface tension 0.006 0.001 0-030 

+0.69 (a4k4)' - 0.060 ( ~ ~ 4 k q ) ~  + ( a 4 M 2  

TABLE 3 

On substituting in equation (2.10) we obtain 

AT = 0.35 + 0.66(a,E,)2. (6.1) 

Hence, we should expect the critical ratio to be somewhat greater than 

ro = 1.736, 

and to increase very slightly with (a4k4). Since (a,k,) is of the order of 0.2 or less, 
the latter correction is small. 
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Since the mass-transport currents have been neglected, equation (6.1) is 
valid only to within an order of magnitude. Nevertheless it may be noted that 
the displacement of the peak response to the right of r,, is of the same order, as 
expected, though less by a factor of about 2. 

7. Discussion and conclusions 
In spite of the scatter of the observations in figure 5, it is apparent that the 

amplitude a4 of the tertiary component, as exemplified by the peak amplitude 
in figure 6, does increase almost linearly with x in the manner predicted. From 
this alone it is legitimate to conclude that the resonant interaction has been 
observed. 

Owing to the limited sensitivity of the wave probe, it was necessary to work 
with primary waves of rather large steepness, especially a,k,. Hence it was not 
possible to verify convincingly the theoretical shape of the response curve 
as a function of r .  Nevertheless, the shape of the response curve, as given by the 
width and mean position of the resonant peak, are certainly consistent with the 
approximate theory. 

The problem of increasing the sensitivity of the wave probe has been solved 
by McGoldrick et al. (1966).  They have thus been able to work with smaller steep- 
ness and to verify more precisely the form of the response curve. 

We are indebted to the Director of the Admiralty Experimental Works, 
Mr R. M. Newton, for the use of the model tank in the A.E.W. Wave Laboratory. 
Generous assistance was given by M i  J. E. Connolly, Mr W. J. Wilkinson and 
other members of the A.E.W. Staff, to whom we express our thanks. Mr B. J. 
Hinde and Mrs P. Edwards of the National Institute of Oceanography kindly 
assisted us with the numerical analysis of the measurements. The preliminary 
report of these experiments was prepared while one of us (M. S. L.-H.) was 
visiting the Institute of Geophysics and Planetary Physics, University of Cali- 
fornia, in 1961 and 1962. He is indebted to the Director, Walter Munk, for his 
hospitality. 

Appendix 1 
Corrections to the resonant frequency ratio 

We now calculate the corrections to the critical ratio (in other words the ‘de- 
tuning’) which results from three different effects: surface tension, finite depth 
of water and finite wave amplitude. In  the last of these we include both the self- 
interactions and the mutual interactions of the primary waves. When each of the 
effects is small they may be calculated by the method of small perturbations, and 
are simply additive. 

Suppose, in a general way, that the relation between frequency and wave- 
number for the two primary waves is given not by equations (2.1) but rather by 
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where el and e2 are small compared with unity. Suppose further that for the 
tertiary wave 

(2a, - (r2)2 = g(4k; + k ; p  (1  +€4). 

Eliminating k,  and k, from the above equations and neglecting squares and pro- 
ducts of the we have 

(2r - 1)4 = 4r4( 1 - 2.5, + 2e4) + (1 - 26, + 2s4), 

where r = gl/cr2, as before. Now write 

r = ro+Ar,  

where ro is the non-zero root of (2.5). Then to the same order of approximation 
we have 

8(2r0- l )3Ar = 1 6 r ~ A r - 8 r ~ ( s l - ~ 4 ) - 2 ( ~ 2 - e 4 ) ,  

and hence 

Inserting the numerical value of ro from equation (2.5) we fhd 

A, = - 1 . 9 5 7 ~ ~  - 0.054~~ + 2.01 la,. 

(u) Correction for Jinite depth 

The period equation for waves in water of uniform depth his 

v2 = gk tanh kh. 

c ~ 2  = gk( 1 - e-2kh) (1 + e-Zkh )- 1. 
Which can be written 

When e-kh is small, this is replaceable by 

v2 = gk( 1 - 2e-2kh). 

(b )  Correction for surface tension 

For waves controlled by both gravity and surface tension we have 

g2 = gk + (T /p )  k3, 

where T is the surface-tension constant and p denotes the density. This may 
be written 

g2 = gk(l+ ( T / p g )  k2}. (A51 

In the case of clean water at room temperature, 

T/(pg) = 74/( 1-00 x 981) = 0.075 om2. 
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(c) Correction for Jinite amplitude 

For waves of finite amplitude there is a small increase in the phase velocity, given 

by O2 = gk( 1 + a2k2), 

(see Lamb 1932, $250). 

(d) Correction for mutual interaction 

It was shown by Longuet-Higgins & Phillips (1962) that in the presence of any 
wave (wave-number kl)7 a second wave (wave-number k,) undergoes a slight 
change in phase velocity, and this change is given by 

where 
A% = K’/(2ga,k,), 

+ a,(k, - k, + k2 C O S ~  $8 sin2 $0) + a& + k,) cos 8 (A71 1 
and a, p, 8 are the angles shown in figure 7. 

FIGURE 7. Definition diagram for the angles 8, a, p. 

The proportional change in velocity is 

Ac2/c2 = K ’ / ( 2 g a 2 c r 2 ) 7  

and hence A ( W 4  = K ’ / ( g a , ~ , ) -  

Thus, 

or fT; = gk2( 1 + Ma2,k2,), 
where M = K’/(a2,a,gk~cr2) = ( ~ , k , ) - l  x square bracket in (A7). (A 8) 
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If the waves are mutually perpendicular (8 = in-), 
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and we find after some reduction, 

At the resonant frequency, the effect of wave 1 on wave 2 is found by writing 
T = r, = 1-7357 in (A9) giving M = -0.073. The effect of wave 2 on wave 1 
is found by interchanging the suffices or inverting r ,  i.e. r = 1 + 1.7357, giving 

The effect of wave 1 on wave 4 is found by replacing the suffix 2 by the suffix 
4 in (As) and taking 8 as the angle between k, and k,; a and /3 being changed 
correspondingly. It is then found that M = 2.92. Similarly, for the effect of wave 2 
on wave 4 it is found that M = - 2.15, and for the effect of wave 4 on waves 1 and 2 
we find M = 0.69 and - 0.06, respectively. 

M = -0.66. 

These corrections are all summarized in table 1 (see p 420). 

Appendix 2 
The response function 

We now calculate the amplitude of the tertiary wave at different places in the 
tank, and for different frequency ratios r ,  on the assumption that the waves are 
effectively deep-water gravity waves of small ampliutde, and ignoring the small 
corrections mentioned in Appendix 1. 

If the surface elevation corresponding to the two primary wave trains is given 

by a, cos (k,. x-a , t )  +a,cos (k, .x- a&, 

then the equation for the tertiary wave potential can be shown (Longuet- 
Higgins 1962) to be as follows: 

where K is a function of the wave amplitudes a,, a,, the wave-numbers k,, k, 
and the frequencies a,, a,. In the case we are considering, when the angle between 
k, and k, is go", we have 

r 

where a denotesthe angle between k, and (kl- k,). Write 

12kl-k21 = k,, (2a,--cr,) = a4 

and consider the solution to (A10) together with Laplace's equation Vz$ = 0 
and the deep-water condition: q5 + 0 as the vertical co-ordinate z tends to - co. 
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We also assume that the total flow across the plane x = 0 vanishes, where x 
is the horizontal co-ordinate in the direction of propagation. It can be verified 
that the solution is 

[ e k 4  sin ( k4x - v4 t )  - eko sin ( I%,  x - a4 t ) ] ,  ( A l l )  
K 

$== 
where k, = ails. The f i s t  term in the square brackets represents a particular 
integral of (A lo), and the second term represents a free wave added in order to  
satisfy the imposed boundary condition at  x = 0. Now when z = 0,  (A 11) can 
be written, 

$ = (-2K/(a~-gk4)}sin~(k,-k,)xsin{~(k,+k,)x--~,t}, 

or 

where 

When Sk/k4 is small, (A 12) represents a wave of wave-number k, approximately, 
travelling with nearly the free-wave velocity. Its amplitude is given by 

(A14) 
1 a$ K v x  sin(x6k) a 4 =  -- 

19 at li--u= 7 1 (x6k) I. 
As the critical frequency ratio is approached, Sk +- 0 and in the limit 

a4 = Kvx/g2. (A151 

In  other words, at resonance the amplitude of the tertiary wave grows propor- 
tionally to the distance x. Equation (A 15) may be written 

a4 = (a1kJ2 (azk2) G(8)  x (A 16) 

(cf. Longuet-Higgins 1962, equation (7.2)), where G is a non-dimensional function 
of the angle 8 between the two primary waves: in this case when 6' = 90" it is found 
thatG = 0.442 .... 

If now the ratio T of the frequencies is varied, equation (A 12) shows that the 
amplitude of the tertiary waves is given more generally by 

where Sk is given by (A 13) and 

The latter function is plotted in figure 8 over the interesting range offrequencies: 
1.4 < r < 2.1. and it will be seen that over the whole range G(+n, Y) differs little 
from G(&T, r,,) 
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FIGURE 8. The function G(Q7r, r )  in 1.4 < r < 2.1. 
The broken line represents G(&, ro). 

We must now relate 61% to the frequency ratio r .  From the definition (A 13) we 
have 

orfrom(2.1) 

If ro is the value corresponding to 61% = 0, i.e. to resonance, and if r = ro + fir) 
then by differentiation of the right-hand side of (A2O) we have to first order, 

" I  

On inserting the numerical value of ro we find 

26k/k4 = - 0.4976r. ( A 2 1 )  
r n l  . / A  ,.A, . 7 .*I .I . I .  , A  - 1 %  . 'Ihe exact expression (azw) is cornparea wim tne approximation ( N Z I )  in 
figure 9. So we have 

6k = -0-249k46r. (A 22)  

So far, the effect of viscosity on the waves has been entirely neglected. In  
that case it has been shown that at the critical ratio ro, the amplitude of the waves 

where 
28 

A = 0-442(a11c,)" (a2kZ). (A24) 
Fluid Mech. 25 
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FIGURE 9. A graph of 2Sk/k4, as given by (A20), compared with 
the straight-line approximation (A 21). 

We shall now consider the modification to this expression when viscosity is taken 
into account. 

In  a free-surface wave, the rate of dissipation of energy per unit time and hori- 
zontal distance is given by 

2pva2u2k 

(see Lamb 1932). In  gravity waves the energy E = &pgaZ is propagated with the 
group velocity (TIZJC, and hence we have the relation 

a( tpgaz a/k)/ax = - 2pvai u2k. 

W 5 )  
1 aa, 
a4 ax 

Thus 

say. Being proportional to the fifth power of the frequency, the damping increases 
very sharply towards the high frequencies. 

We now attempt to combine (A23) and (A25). If the damping is small, it  
will have a first-order effect on the amplitude of the waves but only a second- 
order effect on the phase velocity. Hence the input of energy into the tertiary 

-- = - 4vu5/g3 = -R, 



Third-order resonant wave interactions 435 

waves is unaffected by the viscosity?, though there is also a continuous loss of 
energy due to viscous dissipation. We assume then as a differential equation for 
a4 the following: 

where A and B are the constants in equations (A24) and (A25). Equations (A23) 
and (A25) are the special cases when B = 0 and A = 0, respectively. 

dadldx = A - B u ~ ,  (A261 

The solution of (A26) with boundary condition a4 = 0 at x = 0 ,  is 

a4 = A( 1 - e-B”)/B. (A27) 

Clearly when Bx @ 1 this reduces to (A23), i.e. the rate of growth is initially 
linear. However, when Bx 1 we have the asymptotic value 

a4 A/& 

which corresponds to the steady state, when the input of energy by the primary 
waves is exactly balanced by the dissipation of energy by viscosity. 
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